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Current and Future Offshore Project Characteristics ALSTOM

Source: MAKE Consulting
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Clear trend in going further and deeper to find
available sites ALSTOM

Logistic Cost Drivers

Increasing Project Increasing Distance
Water Depth From Shore

Need for jackets Use of jackets Installation Increased
or tripods or tripods vessel transit export cabling
results in less increases pile time increases time as
foundations per driving time as additional cable
trip well is requiered

Deeper waters increase jack-uptime per Increased weather downtime as sea
site, may exceed jack-up vessel conditions often worsen far from shore
capacities

Greater depths require (i) larger and faster vessels & (ii) new substructure concepts
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\Water depth economics

ALSTOM
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Global Market ALSTOM

Source: MAKE Consulting

UK and German offshore wind - Chinese offshore wind concession

- . . . . b RS
suffices with existing foundation ' projects jumpstart growth
technology for foreseeable future {( shallow/intertidal installations in
; near term
»

. 4
a0 '3

[

Deepwater pilot
Maine leading U.S. programs in process in Japan and
efforts to develop Portugal, Spain, France South Korea
floating offshore wind and Italy both in need
solutions of deepwater
solutions to
scale offshore
wind industry
effectively )
Bl Traditional foundation technologies
B Focus regions for deepwater solutions

Source: MAKE Consulting

Development of a TLP/TLB for Large MW FOWT - AWEA 2012



Path-to-Market
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Global Qualitative Assessment ALSTOM
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Development of a TLP/TLB for Large MW FOWT - AWEA 2012 com petitive



Key Areas of Concern for Floating Technology ALSTOM

\

- Consider massive forces from turbine pitching, rapid acceleration / decelaretion,

- WT compensated by pitch controls, may undermine power production,

SR - Drive train bearing failure concerns,
Roll

J
\

- Servicing a pitching and bobbing platform from jack-up barge,

- Towable platforms may be more advantegeous to tackle this issue,

Major LU . ncreases the criticatlity for onshore service fascilities,
Service

_/
\

- Need of understanding the weather windows requiered for towing fully assembled units,
- Blades and drive shaft are fixed, and unable to pitch to compensate loads

Logistical - Distance from onshore fascility may play a critical factor
Concerns

J
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ALSTOM - Studied floating concepts ALSTOM
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Optimal Design Analysis Workflow ALSTOM
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Sensitivity analysis inputs vectors ALSTOM
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Application of TLB/TLP Design Loads

ALSTOM

BOUNDARY CONDITION

Cij mooring lines 6x6 matrix

Collinear wave-wind load [Fw1]: SURGE
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Thrust wind load [Ft]:
1. Extreme
2. Power production

\ 4

90° misaligned wave load [Fw2]: SWAY

90° vertical wave load [Fw3]: HEAVE




Constraints and/or restrictions for a feasible design  ALSTOM
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Methods employed ALSTOM

«  LSPF-DESIGN-CODE Rel.1.6 (Lee, 2012)
— Computational package:

 Evaluates a coupled dynamic response analysis of the wind turbine, floating
platform and mooring line systems in a given wind and wave condition in the
frequency domain.

— Analytical hydrodynamic analysis methods based on:
* McCamy & Fuchs theory and Kramer-Kronig relations

 TOWER_FLEX (Luypaert, 2011)

— Multi-body, frequency-domain code:

* Tower is modeled as a series of uniform Timoshenko beams connected to each
other.

* It couples 3D flexural motions of the turbine, the floating platform and the
mooring system.

* The mass, damping and stiffness coming from the rotor, the floating platform
and the mooring lines are taken into account via generalized boundary
conditions from LSPF-DESIGN-CODE-Rel. 1.6.
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Haliade 150 - 6MW
New generation offshore turbine
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Results comparison between TLP and TLB

ALSTOM
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Flexible Dynamic Response - TLB @ 60m

ALSTOM
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Flexible Dynamic Response - TLP @ 100m

ALSTOM
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Flexible dynamics help capturing coupled-modes




Structural Analysis (SLS, ULS, FLS)

ALSTOM
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Results ALSTOM

* Two design have been explored, and the results converged to:

— Low water = 50m to 80m (TLB or TLB_Slab)
— Deep water - 100m to 300m (TLP and TLP__Slab)

Global
Cost ()

depth(m)

Strong focus on a simple geom_etry with tunable standard structural components,
moorings & anchors tuned to site conditions:

* Logistically better,
* Less manufacturing complexity,
* Installation controlled cost
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Conclusions ALSTOM

An analysis scheme that couples robust analytical tools to model
waves and the dynamic response of a floating system,
accompanied by a structural design methodology, have been
completed successfully.

ALSTOM has chosen a tension-stabilized system for its WT as it
guarantees its global structural integrity, while only changing the
tower and control systems. The most suitable configurations are:

- TLB for water depths between 50 to 80m,
- TLP for water depths between 80 to 300m,
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Future work ALSTOM

* DESIGN:

— Time-domain fluid impulse theory wave analysis in order to
capture non-linear effects,

— 2" order frequency domain analysis to capture ringing and
springing effects,

— Coupled wind and wave fatigue assessment,

» VALIDATION:
— Model testing to validate whole floating system,

 UNCERTAINTY ASSESMENT:

— Perform a thorough Risk Assessment on design development,
based on interface with Designer, Manufacturer, Transport,
and Installation contractor.
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