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Wind Power Forecasting: Why is it necessary?

Wind Power Forecasts can be used in order to

e Estimate energy pricing for enhanced market trading
e Enable improved scheduling of other generation
e Optimize plant maintenance schedules

e Comply with existing grid regulations

... all of which facilitate successful integration of wind
generation on regional electric grids.
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Quantified Value of Forecasting: Generation Scheduling

What is the variable cost reduction to a system operator using wind forecasts?
- Approximately $11 USD / MWh (savings through more efficient scheduling
of generation).

No State-of-the-Art | Perfect
Wind Wind Wind
Forecast | Forecast Forecast
Total Cost S335M | S430 M S456 M
Reduction
Net Benefit S95 M S121 M
Wind 8,900 GWh 8,900 GWh
Generation
Value of S11/MWh S14/MWh
Forecast

GE-NYSERDA Study for NYISO, 10% Penetration, 2005



Forecasts may be centralized or distributed.

Location Centralized Distributed

Germany X Some market
trading

Denmark X
Spain X X
U.S. X X
Canada X X
VK X X

Benefits of Centralization:

- Consistency in reporting and formatting

- Potentially reduced cost through economies of scale

Benefits of Distribution:

- Encourages competition amongst vendors — seeks the best forecast at the plant level

- Can be better customized for the individual plant owner’s needs.
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What is a state-of-the-art wind power forecast?

Mean Absolute Error of Wind Farm Forecast Services
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Building a wind power forecast...

Numerical Weather Prediction

e Project the boundary layer
meteorology: wind speed,
direction, temperature,
pressure, and humidity

e Coarse-scale model outputs
from government centers
drive high-resolution
mesoscale model.
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Building a wind power forecast...

Forecaster’s Optimization Problem:

e Realistically simulate:
- turbulence (topographic, etc.)
- thermally-driven effects
- atmospheric stability
- near surface exchanges
- wind shear

e Determine:
- resolution (in space and time)
- representation of physical and
/ /T VAN

dynamical processes
- value of observational data /L[] /I \\ \ AN
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Building a wind power forecast...

Training
Models

Multiple solutions

, Adequate feedback of observational data
desired

essential -

Common “training” models used:

- AR(MA)
- neural net
- Support Vector Machines

Missing and/or erroneous data presents
a challenge to the forecaster.
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Building a wind power forecast...

Effect of Reliable Feedback

ENERGY FORECAST ACCURACY
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Building a wind power forecast...

It is possible to produce a wind power forecast with the optimal NWP
and a scaled turbine manufacturer’s power curve, but ...

-Substation Power vs Mast Wind Speed
-Manufacturer's Power Curve
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one can produce a better forecast with a detailed wind farm power model.
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Building a wind power forecast...

GH WindFarmer
meteorology === turbine
site geography = production

turbine specifics

- “ J
> ,

b

industry standard tool for wind farm design,
flow simulation, and optimization
e wake simulation

digitally models each wind farm . flow channeling
turbulence




Measured Substation Power (% of capacity)
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Building a wind power forecast...

Basic Model

Basic Model Power Forecasts (% of capacity)

MAE ~ 11.6% of Capacity

4 Month sample shown
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Building a wind power forecast...
“Refined”

Training
Models

Optimized
NWP

Day-Ahead Forecast vs. Actual
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Building a wind power forecast...

Ramp event: a change in power greater than or equal to 50% capacity
over a duration of no greater than 4 hours.
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Building a wind power forecast...

e No standard metric for evaluating forecast ramp performance

* Ramps not forecast can result in curtailment (up) or scrambling
to fill shortfall with costly reserves (down).

e Perhaps more detrimental: misforecasting the ramp direction

_ CHAI\IIGEI INI' RAMIP B.IAS. V&, RAMP IRATE -
T NP ' ] e Pacific Northwest study showed that
_ el : use of upwind measurement tower
g o5 T g T can reduce forecast error of upramps
A - hort hori
g gher. o . at short horizons
|:|':g a.0 | .. » Ek.”i!_:;!.:‘ - - - i
s - "-': .‘!’ ¥ S SR - : e Over 1 year period, as many as 40% of
g’" ® . .. ™ . 7
§ .. BRI T S forecasted ramps showed reduced
- ot = % ﬁ _____ error in ramp rate, magnitude when
upwind data is used intelligently.




Meeting the needs of the Asian-Pacific Wind Sector

e Penetration of wind in countries like India starting to
impact grid operations significantly.

e New sites in India require forecasts with penalties levied on

production outside a margin of error (+/- 30% actual gen).
GH Forecaster Day-Ahead Predictions:

e Complex meteorology, | ;o Wind Farm in India
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Summary

e Wind Forecasting proves its value for efficient system operations
that promote successful wind integration.

e State-of-the-art forecasts rely on high quality observational data,
knowledge of how best to tune weather and power models for a
local wind regime.

e An advanced power model is generally preferred over a power
curve — reduces mean error.

e Ramps are particular challenges — no well-defined way to
optimize for predicting; Upwind observations show some
benefits. No standard way to evaluate ramp forecasts.
Advances being made for probabilistic ramp prediction.

Increased wind penetration in emerging markets (e.g., India, China)
now significantly impacting grid operations — grid codes reflect this
and incentivize high quality wind forecasts.



